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Previous approaches to microbial source tracking have been 
focused on detection of fecal contamination in water4–6, limited 
to detection of predetermined indicator species and custom- 
tailored biomarkers from source communities. One notable 
exception7 uses community structure to measure similarity 
between sink samples and potential source environments. Other 
prior work uses data-driven identification of indicator species but 
lacks a probabilistic framework8. SourceTracker’s distinguishing 
features are its direct estimation of source proportions and its 
Bayesian modeling of uncertainty about known and unknown 
source environments.

We collected barcoded pyrosequencing datasets of bacterial 16S 
ribosomal RNA gene sequences representing surface contamina-
tion in office buildings, hospitals and research laboratories, and 
reagents used for metagenomics studies (Supplementary Table 1 
and Online Methods). Using SourceTracker, we compared these 
data to published datasets from environments likely to be sources 
of indoor contaminants, namely human skin, oral cavities, feces9 
and temperate soils10 (Supplementary Table 2). We treated 
these natural environments as sources contributing organisms 
to the indoor sink environments through natural migration (as 
with office samples) or inadvertent contamination (as with no-
 template PCR controls) (Supplementary Fig. 1).
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contamination is a critical issue in high-throughput 
metagenomic studies, yet progress toward a comprehensive 
solution has been limited. We present sourcetracker, a bayesian 
approach to estimate the proportion of contaminants in a given 
community that come from possible source environments. 
We applied sourcetracker to microbial surveys from neonatal 
intensive care units (nicus), offices and molecular biology 
laboratories, and provide a database of known contaminants  
for future testing.

Advances in sequencing technology and informatics, including 
the minimum information about metadata standards (mini-
mum information about a marker gene sequence, a metagenome 
sequence and a genome sequence), are resulting in an exponen-
tial increase in the acquisition and sharing of microbial data. 
These advances are revolutionizing our understanding of the 
roles microbes have, for example, in health and disease or in 
biogeochemical cycling. Considerable attention has been paid to 
reducing error from PCR1 and sequencing2, but the problem of 
sample contamination has been relatively unstudied. Preparing 
contaminant-free DNA is challenging, and the sensitivity of PCR 
and whole-genome amplification methods means that even trace 
contamination can become a serious issue3. Ideally, computational 
methods could identify both the source and quantity of contami-
nation, and this knowledge could help prevent future instances of 
contamination. Furthermore, accurately estimating the propor-
tion of contamination from a given source environment would 
have far-reaching applications in source tracking, for example, in 
forensics, pollution and public health.

We developed SourceTracker, a Bayesian approach to identify-
ing sources and proportions of contamination in marker-gene 
and functional metagenomics studies. Our approach models 
contamination as a mixture of entire source communities into 
a sink community, where the mixing proportions are unknown. 
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figure 1 | Comparison of SourceTracker and other models. Indicated 
models estimate the proportions of two source environments in simulated 
samples, as the degree of overlap between the environments was varied 
from a Jensen-Shannon divergence of 0 (completely identical and thus 
impossible to disambiguate) to 1 (completely non-overlapping and thus 
trivial to disambiguate). The coefficients of determination (R2) of the 
estimated proportions are plotted. Each point represents the mean R2 for 
three trials of 100 samples each; error bars show s.e.m. (n = 3).
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Although qualitative assessment of source and sink 
similarities can be performed by visualizing UniFrac dis-
tances11 (Supplementary Fig. 2) or taxon relative abundance 
(Supplementary Fig. 3), these methods cannot tell us the pro-
portion of each sink sample (such as a cotton swab) compris-
ing taxa from a known source environment (such as soil). The 
problem would be trivial if source and sink environments had 
no taxa in common, but usually some taxa are common to both. 
Source-tracking methods must therefore leverage potentially  
useful information contained in the abundance of species with 
low or moderate source environment endemicity.

Previous work has used probabilistic indicator species for naive 
Bayes estimation6. Although naive Bayes actually estimates the 
probability that each source generated the entire sink sample, 
these probabilities can sometimes act as proxies for the pro-
portions of the sink contributed by each source. We compared 
the accuracies of naive Bayes modeling and SourceTracker 
analyses as we varied the distributions of taxa in two simulated 
source environments from perfectly identical to perfectly non-
 overlapping (Fig. 1). Naive Bayes modeling was accurate when 
disambiguation was easy but inaccurate elsewhere. SourceTracker 
performed well even when disambiguation was difficult (R2 ≥ 0.8, 
Jensen-Shannon divergence ≥ 0.05; Fig. 1). We also evaluated the 
accuracy of the random forests classifier used in previous source-
tracking work7. Like naive Bayes modeling, the random forests 
classifier estimates the probability that the entire test sample came 
from a single source, but these probabilities are often reasonable 
estimates of the mixing proportions for source tracking. Random 
forests classification generally performed better than naive Bayes 
analysis but worse than SourceTracker. SourceTracker outper-
formed these methods because it allows uncertainty in the source 

and sink distributions, and because it explicitly models a sink 
sample as a mixture of sources.

The Bayesian approach requires consideration of all pos-
sible assignments of the test sample sequences to the differ-
ent source environments, but direct exploration is intractable. 
Fortunately, we can explore this joint distribution using Gibbs 
sampling, a technique widely used in the exploration of complex 
posterior distributions in applications such as topic modeling12. 
Community-wide source tracking is analogous to inferring the 
mixing proportions of conversation topics in a test document, 
except that the source environment distributions over taxa (topic 
distributions over words) are known from the training data, and 
each test sample may contain taxa from an unknown, uncharac-
terized source. The application of Gibbs sampling to topic mod-
eling has been discussed previously13.

SourceTracker considers each sink sample x as a set of n 
sequences mapped to taxa, in which each sequence can be assigned 
to any one of the source environments v ∈ 1…V}, including an 
unknown source. These assignments are treated as hidden vari-
ables, denoted zi = 1…n ∈ 1…V}. To perform Gibbs sampling, we 
initialized z with random source environment assignments and 
then iteratively reassigned each sequence based on the conditional 
distribution: 
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in which mtv is the number of training sequences from taxon t 
in environment v, nv is the number of test sequences currently 
assigned to environment v, and ¬i excludes the ith sequence. The 
first fraction gives the posterior distribution over taxa in the 
source environment; the second gives the posterior distribution 
over source environments in the test sample. Both are Dirichlet 
distributions, and Gibbs sampling allows us to integrate over their 
uncertainty. The Dirichlet parameters, α and β, act as imaginary 
prior counts that smooth the distributions for low-coverage source 
and sink samples, respectively. They also allow unknown source 
assignments to accumulate when part of a sink sample is unlike 
any of the known sources. By inferring source proportions for 
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figure 2 | SourceTracker proportion estimates for a subset of sink 
samples. (a–c) Source environment proportions for three sink samples 
estimated using SourceTracker and 45 training samples from each source 
environment: mean proportions for 100 draws from Gibbs sampling (a), 
data for the same samples, including s.d. of the proportion estimates (b), 
and visualization of the 100 Gibbs draws; each column shows the mixture 
from one draw, with columns ordered to keep similar mixtures together (c).
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figure 3 | Relative abundance of common contaminating operational 
taxonomic units (OTUs). SourceTracker may assign a different source 
environment to each observation (sequence) of an OTU in the sink 
samples. These ten OTU-source pairs had the highest average relative 
abundance across sink environments, excluding the unknown source.  
The legend gives the genus-level taxonomic classification14 of the 
OTU, the OTU identifier and the source environment assigned to these 
observations of the OTU. Note that the OTU classified as Enterobacter,  
a lineage commonly seen in the gut, was more prevalent in the skin 
training samples than the gut training samples.
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multiple sink samples simultaneously, we can allow them to have 
an unknown source in common. We could also include several 
unknown sources. Full details and an overview of Gibbs sampling 
are available in Online Methods.

For each of our indoor sink environments, we used 
SourceTracker to estimate the proportion of bacteria from ‘gut’, 
‘oral’, ‘skin’, ‘soil’ and ‘unknown’ sources (that is, one or more 
sources absent from the training data) (Fig. 2 and Supplementary 
Figs. 4 and 5). In general, wet-lab surface communities tended to 
be composed mainly of bacteria from ‘skin’ and ‘unknown’, with 
the exception of PCR water, which was generally more similar to 
‘gut’. Neonatal intensive care units (NICU) and office commu-
nities were dominated by skin bacteria, except for two samples 
from Arizona, USA, which were dominated by soil bacteria, and 
several telephone samples, which were dominated by oral bacte-
ria. SourceTracker also reported its confidence in the estimated 
mixtures. For example, sample lab 1 PCR water 1 had several 
possible mixtures (all ‘unknown’, ‘gut and skin’, and ‘gut and soil’ 
sources), and NICU counter 3 had mostly ‘skin’ and ‘unknown’ 
components with an unstable gut component; we can visualize the 
posterior distribution over mixtures directly (Fig. 2c). From these 
results we can also determine the most common contaminating 
taxa (Fig. 3).

For low-coverage sink samples or when source environments 
lacked a ‘core’ set of taxa, SourceTracker will report high variabil-
ity in the proportion estimates (Fig. 2). In some datasets, varia-
tion in each source environment (the ‘non-core’ taxa) might be 
accounted for by using phylogenetic information, by automatically 
identifying distinct niches in the broader source environment, 
by modeling postmixture population dynamics or by modeling 
potential biases inherent in the DNA extraction procedures used; 
these are important directions for future work. SourceTracker also 
assumes that an environment cannot be both a source and a sink, 
and we recommend research into bidirectional models.

SourceTracker can also be used to detect low-level contamina-
tion, with sensitivity adjusted by the prior parameter β. For simu-
lations with 1% and 5% contamination, SourceTracker achieved 
nearly perfect specificity for a wide range of sensitivities, demon-
strating that it is not restricted to low-biomass sink environments 
in which contamination rates are likely to be higher (area under 
the receiver operating characteristic curve = 0.971 for 1% and 
0.989 for 5%; Supplementary Fig. 6).

Based on our results, simple analytical steps can be suggested for 
tracking sources and assessing contamination in newly acquired 
datasets. Although source-tracking estimates are limited by the 
comprehensiveness of the source environments used for training, 
large-scale projects such as the Earth Microbiome Project will dra-
matically expand the availability of such resources. SourceTracker 

is applicable not only to source tracking and forensic analysis 
in a wide variety of microbial community surveys (where did 
this biofilm come from?), but also to shotgun metagenomics and 
other population-genetics data. We made our implementation of 
SourceTracker available as an R package (http://sourcetracker.
sf.net/), and we advocate automated tests of deposited data to 
screen samples that may be contaminated before deposition.

methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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Data collection. We collected the ‘office’ samples from surfaces 
in 54 offices in three office buildings (18 per building) located 
in New York City, San Francisco and Tucson, Arizona, USA 
(Hewitt, K.M., Gerba, C.P., Maxwell, S.L. & S.T.K., unpublished 
data). In each office, we sampled the same two surfaces, phone 
and chair, by swabbing ~13 cm2 with dual-tip sterile cotton  speci-
men collection and transport swabs (BD Diagnostics). Phone and 
chairs had already been determined by culture-based methods to 
be the most contaminated surfaces in these offices (unpublished 
data). We also collected samples from surfaces in two different 
large level-three NICUs in San Diego using the same methods. 
After sampling, we stored swabs in sterile labeled tubes, placed 
them on ice and shipped them overnight or drove them directly 
to the lab for DNA extraction.

For the lab 1 and lab 2 datasets, we cut sterile nylon-flocked 
swabs (Copan) and swabs of sterile scissors into MoBio 0.7 mm 
garnet bead tubes (Mo Bio Laboratories) using autoclaved and 
flamed scissors in a biosafety cabinet, placed them at −80 °C 
within 1 h and stored them for <1 week before DNA extraction.

For the lab 3 dataset, we used sterile nylon-flocked swabs to 
sample indoor surfaces including desktops, lab benches, window-
sills, a keyboard and a door handle over a three-month period 
from January–March 2010 in Philadelphia. We cut swabs into 
MoBio 0.7 mm garnet bead tubes using autoclaved and flamed 
scissors in a biosafety cabinet, placed them at −80 °C within 1 h 
and stored them for <1 week before DNA extraction.

DNA extraction, PCR and pyrosequencing. For the ‘office’ and 
‘NICU’ samples, we removed the cotton from the swab using a 
flame-sterilized razor blade and deposited the cotton threads into 
a lysozyme reaction mixture. The reaction mixture had a total 
volume of 200 µl and the following components (final concentra-
tion given): 20 M Tris, 2 mM EDTA (pH 8.0), 1.2% P40 detergent,  
20 mg ml−1 lysozyme and sterile water (filtered through 0.2-µm  
filter) (Sigma Chemical). We incubated the samples in a 37 °C water 
bath for 30 min. Next, we added proteinase K (DNeasy Tissue Kit, 
Qiagen) and AL Buffer (DNeasy Tissue Kit) to the tubes and gently 
mixed them. We incubated the samples in a 70 °C water bath for 
10 min. We purified all samples using the DNeasy Tissue kit. After 
extraction, we quantified the DNA using a NanoDrop ND-1000 
Spectrophotometer (NanoDropTechnologies). PCR-barcoded 
primers and conditions have been previously described15. PCR 
purification, dilutions and pyrosequencing (FLX instrument) 
were all conducted by the core facility at the University of South 
Carolina (Environmental Genomics Core Facility).

For the lab 1 and 2 datasets, we extracted genomic DNA from 
swabs using the QIAamp DNA Stool Minikit (Qiagen) with the 
following modifications. We added 1,500 µl of the first lysis 
buffer of the kit and 5 mM DTT to the nylon tips of frozen swabs. 
We bead-beat tubes with BioSpec Products Minibeadbeater-16 
for 1 min and incubated at 95 °C for 10 min. We performed 
the remaining steps according to the manufacturer’s protocol. 
We PCR-amplified 16S rRNA genes using the V1V2 primers  
and conditions described previously16 in duplicate. We quan-
tified purified amplicons using Quant-iT PicoGreen kit 
(Invitrogen) and pooled them in equimolar ratios. We also 
performed PCR on molecular biology grade water (Sigma) and 
included it in the pool. We carried out pyrosequencing using 

primer A and the Titanium amplicon kit on a 454 Life Sciences  
Genome Sequencer FLX instrument (Roche).

For the lab 3 dataset, we extracted genomic DNA from swabs 
using the same extraction kit and technique as lab 1 and 2 above. 
We performed PCR amplification of 16S rRNA genes using 
the V1V2 primers and conditions described previously16. We 
quantified purified amplicons using Quant-iT PicoGreen kit 
(Invitrogen) and pooled them in equimolar ratios. We also per-
formed PCR on molecular biology grade water and included it in 
the pool. We carried out pyrosequencing using primer A and the 
Titanium amplicon kit on a 454 Life Sciences Genome Sequencer 
FLX instrument.

DNA barcodes and primers for all samples collected are avail-
able in Supplementary Table 1.

Combined preprocessing of contamination datasets. We proc-
essed the DNA sequence data for all source and sink samples in 
combination using the quantitative insights into microbial eco-
logy (QIIME) pipeline17. To avoid bias, we selected subsets of the 
same size (45 samples) from each of the four source environments 
(Supplementary Table 2). We sequenced samples in multiplex 
using error-correcting nucleotide barcodes, and we used QIIME 
to de-multiplex the samples and perform quality filtering. We 
then used flowgram clustering18 to remove sequencing noise. We 
clustered similar sequences (≥97% similarity) into OTUs with 
uclust19 and assigned taxonomic identity to each OTU using the 
Ribosomal Database Project’s taxonomy assignment tool14. We 
aligned representative sequences from each OTU against the 
greengenes reference ‘core set’ of 16S rRNA gene sequences (http://
greengenes.lbl.gov/cgi-bin/nph-index.cgi). We then removed  
likely chimeric PCR products using Chimera Slayer20. We used 
the remaining aligned sequences to construct a phylogeny relating 
the sequences, via FastTree21.

Identification and removal of chimeras. We removed likely 
chimeric PCR products using Chimera Slayer20. Note that we 
first aligned representative sequences from each OTU to the 
greengenes core set. Any OTU not aligning to the greengenes 
core set at >75% identity to the nearest basic local alignment 
search tool (BLAST) hit in the core set was discarded. These dis-
carded sequences may contain chimeras as well as other artefacts. 
However, once completed we also used Chimera Slayer to screen 
the resulting sequences for chimeras. The number of chimeras 
removed were: 58 sequences from lab 1 samples (4%), 105 from 
lab 2 samples (4%), 4,208 from lab 3 samples (5%), 422 from office 
samples (0.3%) and 1,365 from NICU samples (0.6%).

Principal coordinates plots. After randomly selecting 500 
sequence reads per sample and dropping low-coverage samples 
to control for sequencing effort, we used UniFrac11 to measure 
the phylogenetic dissimilarity of all samples and performed prin-
cipal coordinates analysis on the matrix of unweighted UniFrac 
distances using QIIME17.

Gibbs sampling overview. To begin the Gibbs sampling proce-
dure we assigned each sequence to a random source environ-
ment. We assumed that these assignments are correct (even 
though they are random) and tallied the current proportions of 
the source environments in the test sample. We then removed one 
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sequence from the tallies and reselected its source environment 
assignment, in which the probability of selecting each source was  
proportional to the probability of observing that sequence’s taxon 
in that source, multiplied by the current estimate of the probabil-
ity of observing that source in the test sample. After the reassign-
ment, we updated the tally for the selected source environment, 
and repeated the process on another randomly selected sequence. 
After we reassigned all of the sequences many times in this  
manner, each set of assignments we observed was a representative 
draw from the distribution over all possible sequence-source 
assignments. To estimate the variability of this distribution, we 
can repeat the procedure as many times as we like, and we can 
report summary statistics for the mixing proportions or even 
visualize their distributions directly (Fig. 2c).

Dirichlet prior parameters. A larger value of β causes a smoother 
posterior distribution over environments in the sink sample. This 
is valuable when we want to avoid overfitting in sink samples with 
few sequences. By assigning different relative values of β to each 
environment, we can also incorporate prior knowledge about the 
expected distribution of source environments in our sink samples. 
α represents a prior count of each taxon in each source environ-
ment. This allows taxa that are unlikely under the known source 
environment distributions to accumulate in an unknown envi-
ronment during the sampling procedure. To simplify the choice 
of values for α and β, we treated them as prior counts relative to 
the number of sequences in the test sample, rather than abso-
lute prior counts. For all inferences performed in this paper, we 
set both α and β to 0.0001. We used a separate and larger value 
of α (0.1) for the prior counts of each taxon in the unknown 
environment, to prevent that environment from overfitting each 
individual test sample. If we had a prior belief that some of the 
test samples shared the same unknown environment, we could  
perform inference on them jointly, and reduce this separate  
α value accordingly.

As is typical in Gibbs sampling, we first performed ‘burn-in’ 
passes (25 passes) through the entire set of sequences in a data 
sample before drawing a mixture sample from the joint posterior. 
We also restarted the entire sampling process with new random 
hidden variable values 100 times, thereby collecting a total of 
100 samples from the posterior distribution for each sample. 

Each iteration on a sink sample with V source environments 
required O(V2n) operations. Before running Gibbs sampling, we 
rarefied all samples to an artificial sequence depth of 1,000. We 
kept any samples whose original sequence depth was less than 
1,000 at that lower depth.

Simulations. For the comparison of SourceTracker to naive Bayes 
and Random Forests22 (Fig. 1), we simulated two source environ-
ments with varying degrees of overlap in their distribution over 
taxa by defining a single uniform Dirichlet prior over 100 taxa 
with varying concentration levels and drawing two multinomial 
distributions from it. By varying the concentration parameter, we 
could control the extent of overlap between the two multinomials. 
The simulation procedure (Supplementary Fig. 7) was repeated 
three times.

For the application of SourceTracker with Gibbs sampling to 
the detection task, we used all of the gut and skin training sam-
ples to estimate the multinomial distribution over taxa in each 
environment. To generate ‘contaminated’ samples, we drew 100 
simulated samples from each environment at sequencing depth 
1,000 and mixed them together with 1% (or 5%) skin and 99% 
(or 95%) gut. We also generated 100 pure gut samples at depth 
1,000. We then ran SourceTracker as described above to estimate 
the proportion of skin taxa in the simulated gut samples. We used 
a contamination threshold of one-half of the contamination rate 
and varied the Dirichlet parameter β to adjust the sensitivity of 
the model (higher β means higher sensitivity). For each value  
of β, with its corresponding level of sensitivity, we measured 
the specificity of the contamination predictions made by 
SourceTracker, and plotted the values as receiver operating 
 characteristic curves (Supplementary Fig. 6a,b).
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