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ABSTRACT

Motivation: The relative abundance of retroviral insertions in a
host genome is important in understanding the persistence and
pathogenesis of both natural retroviral infections and retroviral gene
therapy vectors. It could be estimated from a sample of cells if
only the host genomic sites of retroviral insertions could be directly
counted. When host genomic DNA is randomly broken via sonication
and then amplified, amplicons of varying lengths are produced.
The number of unique lengths of amplicons of an insertion site
tends to increase according to its abundance, providing a basis for
estimating relative abundance. However, as abundance increases
amplicons of the same length arise by chance leading to a non-
linear relation between the number of unique lengths and relative
abundance. The difficulty in calibrating this relation is compounded
by sample-specific variations in the relative frequencies of clones of
each length.
Results: A likelihood function is proposed for the discrete lengths
observed in each of a collection of insertion sites and is maximized
with a hybrid expectation–maximization algorithm. Patient data
illustrate the method and simulations show that relative abundance
can be estimated with little bias, but that variation in highly abundant
sites can be large. In replicated patient samples, variation exceeds
what the model implies—requiring adjustment as in Efron (2004) or
using jackknife standard errors. Consequently, it is advantageous
to collect replicate samples to strengthen inferences about relative
abundance.
Availability: An R package implements the algorithm described here.
It is available at http://soniclength.r-forge.r-project.org/
Contact: ccberry@ucsd.edu
Supplementary information: Supplementary data are available at
at Bioinformatics online.
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1 INTRODUCTION
The new deep sequencing methods allow longitudinal tracking of
DNA sequence variation in cell populations. These methods have
been applied extensively to studies of activation of host cell genes
by integration of retroviral DNA. In human gene therapy, vectors
derived from retroviruses have been used to treat a sizeable and
growing number of diseases, but there have been several cases of
insertional activation of cancer genes, leading to intense interest in
the relationship of vector integration sites in the human genome
to the size of cell populations harboring that clone (Cavazzana-
Calvo et al., 2010; Deichmann et al., 2007; Gabriel et al., 2009;
Hacein-Bey-Abina et al., 2008; Wang et al., 2007, 2008, 2010).
In infections by human T-cell leukemia viruses, the relationship
between integration site position and cell clone size is likely to
be important for leukemia, but the full importance remains to be
clarified (Gillet et al., 2011; Meekings et al., 2008). Distributions
of large numbers of integration sites can be determined using
the new deep sequencing methods, but use of this information to
estimate abundance is complicated by several types of recovery
biases (Gabriel et al., 2009; Wang et al., 2008). In a typical
experiment, blood cells are obtained from an HTLV1-infected
subject or gene therapy patient, genomic DNA is purified from the
heterogeneous populations of cells and then DNA is cleaved, ideally
by a relatively random method such as DNA shearing. Short DNA
linkers are ligated onto the DNA ends, then host–virus junctions are
amplified by polymerase chain reaction (PCR) using one primer
that binds the linker and another that binds the viral DNA end.
PCR products are then sequenced in bulk, and the resulting reads
are aligned to the human genome. Here we present computational
tools for relating this type of data to the relative abundance of
each cell clone, as marked by integration sites, in the starting cell
population.

Suppose that the number of cells in a patient that could harbor a
viral insertion is C and the number of sites or locations in the genome
of each cell (determined by chromosome, position and strand) is L.
Then there are C×L places in which such an insertion might be
found. Use Mil to indicate whether there is an insertion in site i in
cell l. Let Mil =1 for an insertion and Mil =0 for no insertion there.
The abundance of an insertion at one of the L sites is the number
of cells hosting an integrated retroviral DNA at that site. That is,
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Mi+ =∑C
l=1Mil is the abundance of insertions at site i. The relative

abundance

ρi = Mi+∑L
i=1Mi+

is the fraction of the places harboring an insertion whose site is i. The
collection of relative abundances is used to characterize a retroviral
infection and monitor it for changes. As examples, the number of
different insertion sites, the appearance of a highly abundant site,
an increase in the number of different sites and measures of the
diversity of sites such as the Shannon Information or Gini coefficient
all indicate features of the disease or its response to treatment.
Previous work has tracked such measures to understand disease
progression after infection with human T-cell leukemia virus type 1
(HTLV-1) (Gillet et al., 2011; Meekings et al., 2008), latency in
human immunodeficiency virus (HIV) infections (Finzi et al., 1997;
Han et al., 2007) and cell dynamics after human gene correction
with integrating vectors (Deichmann et al., 2007; Gabriel et al.,
2009; Hacein-Bey-Abina et al., 2008, 2010; Wang et al., 2010).

Cleaving the DNA from a sample of cells using restriction
enzymes or mu transposons (Brady et al., 2011; Gabriel et al., 2009;
Wang et al., 2008) and sequencing the fragments (Hacein-Bey-Abina
et al., 2003; Mitchell et al., 2004; Schroder et al., 2002; Wang et al.,
2007; Wu et al., 2003) potentially allows characterization of the
relative abundance of cell clones marked by distinct integration sites
(Gabriel et al., 2009; Schmidt et al., 2003; Wang et al., 2008, 2010),
but variation in the genomic distribution of restriction sites or sites
favored by mu transposons introduces biases that can be hard to
correct.

Breaking DNA by sonication is nearly random (Aird et al., 2011),
so that if those fragments could be directly counted, estimates of
abundance could be obtained. However, it is necessary to amplify
the fragments by PCR before they can be sequenced, and variation
in the number of fragments that each parent fragment generates
vastly inflates the variance of estimates or abundance (Section 12
in Supplementary Material) based on the read count—the number
of fragments whose sequence is mapped to a single site. In data
such as Gillet et al. (2011) report, where most insertion sites only
contribute one or two parent fragments to the sequencer, simple
read counts are useless. However, when multiple cells contain an
insertion at the same site, random shearing by sonication usually
produces fragments of different lengths. The number of different
lengths associated with each integration site tends to increase with
its abundance, but the increase is non-linear due to coincidental
shearing at the same site in multiple genomes. Gillet et al. (2011)
empirically fitted a calibration curve for this non-linear function
using three dilutions of genomic DNA from an HTLV-1 infected
individual, and used it to estimate the number of parent fragments
of each site in their samples.

Below, estimation of the relative abundance of a retroviral
insertion site in an infected patient using the collection of fragment
lengths for each integration site is considered. We introduce some
notation for referring to data on retroviral insertions and mention
some measures that may be of interest in studying populations of
sites. Then we describe a maximum likelihood estimator based on
the distinct lengths of clones recovered. A brief review of procedures
for collecting fragment length data for retroviral insertions is given
in Section 2, see Gillet et al. (2011) for more details. We devise
a statistical approach for estimating the abundances of retroviral

insertion sites and an algorithm to implement it. The algorithm
is applied to real and simulated data and the accuracy of the
approach is assessed and compared with the method of Gillet et al.
(2011). Supplementary Material provides extensive notes and more
details, including studies of estimators of number of unseen species
proposed by Chao (1987) and by Chao and Lee (1992), of the
Shannon Information and the Chao-Shen coverage adjusted entropy
(Chao and Shen, 2003) and the Gini Coefficient.

2 METHODS

2.1 Recovering fragments, insertion sites and lengths
Adetailed description of sample acquisition and sequencing methods is found
in Gillet et al. (2011). Eleven HTLV-1-infected subjects were studied on three
different dates. Genomic DNA was purified from blood cells, divided into
three replicate subsamples, fragmented by sonication, amplified by ligation-
mediated PCR, and then sequenced using the Illumina Flow Cell. Sequences
were determined for both the HTLV-1/human DNA junction, and the junction
between human DNA and the added linker. Mapping these determined
the insertion site (i) and the fragment length (j) as the difference of their
positions.

For every replicate, the unique sites and lengths were presented as a table
of zeros and ones with one row for every site of the genome and one column
for each fragment length. Each table cell, wij , was set to zero if no fragment
of length j was observed for an insertion at site i and one otherwise. The table
is very large, but has only a few thousand non-zero rows and only these need
to be stored for data analysis.

2.2 Likelihood methods for integration sites
The probability distribution of the observed data, wij , depends on where the
insertions are in the parent population of C×L places (cells and sites), the
sampling of cells and DNA from them and the generation of DNA fragments.

The number of cells hosting a retrovirus integrated in a particular site in
a simple independent random sample of cells follows the hypergeometric
probability law. The expected count for insertion site i is μρi, where μ is
the expected number of insertion sites in the sample and ρi is the relative
abundance of site i. Once the DNA has been fragmented, this count is
subdivided according to φj , the probability that a fragment has length j.
The expected number of fragments for insertion site i of length j is μρiφj .

When the number of sampled cells is a small fraction of the population
total, the multinomial probability law closely approximates the sample counts
for the insertion sites. Poisson likelihoods offer a convenient approach to
multinomial data ‘yielding identical estimates and asymptotic variances’
(Baker, 1994). This observation would motivate the use of an estimating
equation based on the Poisson law whose parameter is the expected number
of fragments (μρiφj) if the number of fragments could be observed. However,
once fragments bearing the insertion are amplified and sequenced, one cannot
know whether multiple sequence reads of the same insertion and length
represent a single amplified, parent fragment or multiple parent fragments—
only the presence or absence of one or more parent fragments among the
sequence reads is known. Under Poisson sampling of parent fragments,
the probability that a parent fragment is seen among the sequence reads
(i.e. wij =1) is one minus the Poisson probability that the count of parent
fragments is zero, pij =1−exp(−μρiφj). The probability that it is not seen
(i.e. wij =0) is 1−pij =exp(−μρiφj).

From these probabilities, the likelihood for the data , wij , for one replicate
is given by :

L=
∏

ij

exp(−μρiφj)
(1−wij ) ×(

1−exp(−μρiφj)
)wij (1)

(Here, we take 00 =1.) It is convenient to parameterize the likelihood
with θi =μρi, which is the expected number of parent fragments of site i.
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The value of μ (and so θ) depends on the particulars of the experimental
setup, i.e. setups that allow more DNA parent fragments to be sequenced
will lead to larger values. In the end, ρi holds greater scientific interest.

The method of maximum likelihood provides a means for estimating
the parameters in (1), and their standard errors. There are two potential
difficulties in their use in this setting. One is that the maximum of Equation
(1) with respect to the free parameters requires the solution of non-linear
equations with a large number of parameters. Sometimes this is difficult,
but a workable algorithm is presented below. The other potential difficulty
is that maximum likelihood methods usually require that the sample size
is large relative to the number of parameters, that the model is correctly
specified, that the parameter values are not too near the boundary of the
parameter space and that certain other technical requisites are met. In the
present context, the small number of replicates obtained and the existence
of insertion sites whose abundance is low must lead to some caution. Some
simulations are described below that test whether the maximum likelihood
approach is suitable for data such as might be collected for HTLV-1 infected
patients. In addition, jackknife bias corrections, jackknife standard errors and
a P-value adjustment due to Efron (2004) are employed to obviate potential
shortcomings of the maximum likelihood method in the present context.
Also, a method for identifying departures from the assumed homogeneity of
the fragment length distribution across sites is illustrated.

2.3 A maximization algorithm
The likelihood in (1) usually has high-dimensional parameters—there will be
one non-trivial value of θi for every site detected in the sample, and at least
one element of φj for every distinct length observed. The dimensionality of
φ may be reduced substantially by estimating it as a regression function with
a low dimension parameter, and this seems reasonable given the apparent
smoothness of φ when one examines the actual data. The accuracy of θ̂ may
be improved by such fitting, but it turns out not to be necessary to solve
the maximization problem. Under (1) it is straightforward to implement
the EM algorithm (Dempster et al., 1977); the so-called complete data
(which we denote by Yij) are the counts of parent fragments according to the
length for each insertion site and are deemed to have Poisson distributions.
The expectation of the complete data, conditioning on the incomplete data
(wij , the indicator variables for the distinct lengths observed at each insertion
site), yields the E-step of the EM algorithm. Given values for the parameters,
θi and φj , the expectation of the complete data given the incomplete data,
wij , is

E(Yij|Wij =wij;θi,φj)= wijθiφj

1−exp(−θiφj)
(2)

The maximization step is trivial: for φ, sum the expectations over i,
optionally smooth the result or fit a regression function, and scale the result
to 1.0 for φ; for θ sum the expectations over j. The well-known slow
convergence of the EM algorithm is evident here, too. However, it is easy to
improve upon the EM algorithm by using the complete data to estimate
φj,j=1,...,J , and then updating θ by fixing φ and taking a step using
the Newton–Raphson method. As shown in Section 3.3 in Supplementary
Material, the Fisher Information for θ is a diagonal matrix, and so this update
is fast and simple. Repetition of this process usually converges in just a few
steps.

2.4 Estimating φ̂

The distribution of fragment lengths can be estimated by the relative
frequencies of the different lengths in the complete data of Equation (2).
However, inspection of raw data (such as in Supplementary Fig. S2)
suggests that the underlying probabilities have a fairly smooth dependence on
fragment lengths. Estimates based on a suitable, low dimension regression
function for the probabilities would have less variation than those based
on relative frequencies. It turns out that excessive variation in φ̂ leads to
an upward bias in the estimates of θ that is greater for large values of θ

and negligible for θ<1000 in the present setting (Supplementary Figs S4
and S5). So, it is worth looking at the distribution of fragment lengths with
an eye toward fitting it with a smooth curve.

The distribution of fragment lengths depends on several factors. The
settings of the machine that performs sonication allow the user to influence
the overall number of shear events. If the probability of shearing at a given
site was the same at every site, and if the occurrence of a break at one
site did not influence the occurrence at another site, then the fragment
lengths would follow the geometric distribution. However, even if fragment
sizes follow the geometric distribution, very short fragments yield too little
sequence to uniquely match the reference genome, and the capabilities of the
sequencer and processing done in preparation for sequencing limit recovery
of fragments to a range of lengths. As a consequence, only fragments in the
range of 25–500 bp can be recovered.

2.5 Extension to multiple replicates
The likelihood [Equation (1)] and the algorithm outlined in Section 2.3 (and
detailed in Section 3.4 in Supplementary Material) can be adapted to handle
the case in which multiple replicates are obtained for a single sample. In place
of φj , a collection of parameters, φjr ,r =1,...,R is specified with r indexing
the replicate and R indicating their number. φjr gives the probability that an
insertion site contributes a fragment of length j in replicate r. Likewise, wij

is replaced by wijr .

2.6 Diagnosing heterogeneity of φ between sites
The expected value of wij is just the probability that wij =1, denoted by pij .

The cumulative sum of the observed wij is yk =∑k
j=1 wij and that for the

expected is xk =∑k
j=1 pij . For a sufficiently abundant site, the plot of the

pairs (xk,yk), k =1,...,J should approximate the line of identity. Departures
from the line of identity can identify discrepancies between the actual and
presumed distribution of fragment lengths. Section 11 in Supplementary
Material describes this approach as well as its limitations in more detail.

2.7 Standard errors for change in relative abundance
The difference in relative abundance is

δid1d2 =ρid2 −ρid1 (3)

where ρid1 (ρid2 ) is the relative abundance of an insertion site at location i on
date d1 (d2), the time that the first (second) sample was drawn. It is important
to monitor the relative abundances over time to detect clonal proliferation
or see whether some clones are diminishing. The standard errors of the two
fractions in (3) are determined from the Fisher Information under Equation
(1), and a z-statistic is obtained from them and δ̂id1d2 .

Typically, there are thousands of insertion sites under surveillance. When
many significance tests of a similar kind are to be performed—called large-
scale simultaneous testing (Efron, 2004)—it is often sensible to correct the
standard error like that provided by likelihood methods from the shape of
the frequency distribution of the test statistics. When the fraction of null
hypotheses in a collection of tests is large, the central part of the distribution
is mostly composed of statistics for null hypotheses and can be used to
estimate the standard error under the null. The vector of relative abundances
may contain thousands of (non-zero) elements, which may be monitored for
change. If most do not change (or change only slightly), then the scale of
the z-statistics from likelihood-based methods for the changes in relative
abundance can be adjusted to compensate for possible mismatches between
the model and the data to which it fits.

The locfdr package allows adjustment of the z-statistics by site and
scale changes that are supposed to better match the null distribution,
estimation of the fraction of insertion sites with changed relative abundance,
and estimation of false discovery rates (FDR). It is applied to the z-statistics
for the change in the relative abundance between sampling dates in each
patient. The z-statistics comparing two dates poorly approximate a Gaussian
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distribution when θi1 +θi2 >10, rather like the well-known continuity issue
in count date (Feller, 1945). So the adjustment factors for z-statistics are
computed only on those z-statistics for which θid1 +θid2 >10.

2.8 Simulation
Simulation of insertion sites and their lengths uses a draw from a Poisson
distribution with parameter, λ=θi to yield a count, si, for each site followed
by a draw from the multinomial distribution with parameters, p=φj and
N =si, yielding nij,j=1,...,J . If nij ≥1, then wij is set to one, otherwise it
is set to zero. Datasets that resemble sets which might be encountered in
practice, must account for low abundance insertion sites that are unseen in
our data. To do this, values of θ̂i < 21 were rounded to the next lowest integer,
then tabled, and then a mixture of 20 equally weighted, truncated Poisson
distributions fit to the table. Each of the resulting 20 λ values was replicated
enough times to match the expected and observed table totals, and combined
with the values of θ̂ of 21 and greater. Full details are provided in Section 9
in Supplementary Material.

2.9 Software
The R language and environment for statistical computing was used to
perform the calculations. An R package called sonicLength was created
to implement the algorithm of Section 2.3 and the simulations. The R
packages locfdr, vegan, multicore, entropy, laeken and brew
were used to carry out the computations and prepare this document and
the Supplementary Material. Emacs org-mode was used to manage
computations and prepare documents.

3 RESULTS
Data from 11 HTLV-1-infected patients were studied. Three samples
taken from each patient were used, and the consecutive samples
were taken at intervals ranging from 466 days to 1998 days with
a mean of 1353 days. The patients are labeled A, B, …, K in the
figures and the individual samples in each patient are numbered 1,
2, 3 in chronological order. On each of those days, three replicate
subsamples were taken from the DNA pool of each sample.

The algorithm of Section 2.3 gave estimates of φ and θ. The glm
fit used cubic B-splines (De Boor, 2001) for the fragment lengths
with interior knots at 50 and 100. The boundary knots are placed at
1 and at 10 plus the largest observed length and counts of zero were
used for unobserved lengths in that range.

Most results below are based on simultaneously fitting all three
replicates of a single sample. However, in some instances fits are
based on the separate replicates. Three iterations of the algorithm
were required, and then the fit was deemed to have converged when
the absolute value of gradients of the log-likelihood with respect to
θi were all <10−5 when divided by θ̂i and <0.01 in any case. Most
samples had converged in the minimum three iterations, but one
sample required 10 iterations to converge. Setting more stringent
convergence criteria had negligible effect on the results.

3.1 Fitting φ

Figure 1 shows the graphs of φ̂ for triplicate subsamples of a
single sample from each of the two different patients (samples B2
and I1). As can be seen there is a substantial difference between
the two patients and the curves for Patient I vary markedly among
the triplicates. As a consequence, it seems unwise to try to find a
common estimate φ̂ to be applied across all the samples or even the
subsamples.
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Fig. 1. φ̂ versus Length. Estimates are provided for the replicates of sample
I1 (solid lines) and sample B2 (dashed lines). The insert (dotted box) shows
the corresponding calibration curves and an empirical calibration curve (thick
line—see text).

The insert in Figure 1 shows the expected number of unique
lengths,

∑J
j=1(1−exp(−θφj)), corresponding to each φ̂ curve as

a function of the number of parent fragments, θ. Estimates based
on these curves approximate the maximum likelihood estimates.
They can be compared with the empirical calibration curve of Gillet
et al. (2011), which is seen to be quite different from these. Indeed,
they are so different from one another that no one of them could
adequately substitute for the others.

It is of some interest to see how the curves for φ̂ vary by patient,
by sample and by replicate. Supplementary Figure S3 shows the
histogram of φ̂60/φ̂100, the ratio of heights of the curve at length
60 and 100. Note that this portion of the curve reflects the typically
geometric decline in the probability of shearing. The values vary by
>3-fold. The analysis of variance (ANOVA) for log(φ̂100/φ̂60) with
factors for patient and sample date (nested within patient) shows
significant effects for patient (P<0.0001) and for date (P<0.0001).
The variance components are estimated as 0.004 for patient, 0.028
for date and 0.019 for replicate. The variance component for patient
is smallest and an order of magnitude smaller than the sum of the
other two. So, most of the variation would seem to be tied to the
sample preparation and processing.

The diagnostic plots of Section 2.6 shown in Section 11 of the
Supplementary Material revealed a few sites whose curve for φ

had sections where φ was much smaller than the estimate (or
perhaps even zero). One such site at chr8:134994577F (by hg18)
had no lengths between 88 and 102 but many outside that region.
A repeat of ATGA covers 134 994 637 to 134 994 665 (or lengths
60–92), which complicates mapping the shear site. The shortfall in
φ might be addressed by inspection of the original sequence reads
for this site or by imputing the number apparently missed. Such
corrective measures would be warranted if high abundance sites
were affected.
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Table 1. Average estimated value of θ

Category Total θ θ̂ θ̃ θ̄

(0,0.25] 34 964 0.17 0.17 0.17 0.17
(0.25,0.5] 69 970 0.36 0.36 0.36 0.36
(0.5,1] 40 875 0.68 0.68 0.68 0.68
(1,2] 15 140 1.47 1.47 1.48 1.47
(2,4] 24 271 2.8 2.8 2.81 2.79
(4,8] 8559 5.83 5.84 5.86 5.77
(8,16] 6461 9.89 9.91 9.94 9.74
(16,32] 1102 24.84 24.89 24.96 23.91
(32,64] 577 42.49 42.55 42.79 39.86
(64,128] 183 86.27 86.45 86.49 75.68
(128,256] 64 174.61 175.02 171.63 137.7
(256,512] 20 336.87 338.03 342.28 307.27
(512,1024] 11 763.09 766.73 822.16 777.5
>1024 14 4749.68 4746.69 4906.33 2725.86

Each abundance parameter is assigned to an interval category. In each category, the
average of the parameters is found (θ), of the estimates based on three replicates (θ̂),
of the estimates based on single replicates (θ̃) and of the average based on empirical
calibration (θ̄).

3.2 Estimates of θ

3.2.1 Fitted values The distribution of θ̂ in a single sample is
shown in the insert in Figure 2. Most of the values are very close to
1.0, about one-fifth are very close to 2.0 and very few are >20. The
values of θ̂ near 1.0 mostly represent insertion sites for which only
one shear event was recovered in the sample. The preponderance
of such sites indicates that there are a substantial number of
unseen integration sites, an issue which is treated in Section 8 in
Supplementary Material. All the samples give a similar impression;
their distributions are summarized by 20 boxplots showing the
relative frequencies of θ̂ according to the bins marked in the insert.
The proportions in the bin for 1.0≤ θ̂<2.0 range from ∼35% to
65%, those in the next bin range from ∼15% to 25% and those in
the last bin (θ̂>20) range from ∼ 1% to 6%.

Simulations were used to determine the bias of the estimates.
For each of 33 setups mimicking the 33 samples here as described
in Section 2.8, 100 runs were performed using the estimates of
φ̂ obtained here to sample the fragment lengths. Then values of
θ̂ and φ̂ (and other estimands noted below) were estimated. For
each of the simulated insertion sites, the average value of the θ̂

was determined. Table 1 groups these according to the value of θ

used in the simulation; the averages of the groups show excellent
agreement between the estimates based on all three replicates and
the parameter values used in the simulations. The agreement is also
good for estimates based on a single replicate, but a modest upward
bias is evident when θ>512. The estimates based on empirical
calibration also show good agreement for θ≤32, but the agreement
is usually not as good for θ>32 and shows a strong downward bias
for θ>1024. The impression that maximum likelihood estimates of
θ have little bias is supported by the Supplementary Material, where
plots of θ against the average of θ̂ over 100 simulations hew closely
to the line of identity (Supplementary Figs S6 and S7). However,
some care is needed in fitting φ̂. When φ̂ was based on the relative
frequencies (rather than fitting the quasi-Poisson glm) and a similar
plot of average θ̂s is prepared, divergence of the estimates from the
true values is seen once the true values exceed 1000. As noted in
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Fig. 2. Abundances of integration sites. The insert shows the cumulative
frequency distribution for one sample, the bins used for relative frequencies
in the larger plot enclosed by tick marks above the x-axis and the relative
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of the data, the central line of each box shows the median, the whiskers
extend to the closer of the extreme or to 1.5 times the height of the box away
from the box, and circles show points, if any, that lie beyond the whiskers.

Section 5.2 in Supplementary Material, the positive second partial
of E(Yijr;θi,φjr ) with respect to φjr suggests this bias when there is

substantial variation in φ̂jr .
Figure 3 shows the relative abundance in each of 3 samples in each

of 11 patients. The estimates use all three replicates taken for each
sample. The samples are ordered according to date (earliest sample
is lowest in each panel). It is evident that the pools of HTLV-1-
infected cells differ substantially across patients; patient H has no
single site accounting for >5% of

∑
i θ̂i, whereas patient I has two

sites accounting for >50%.

3.2.2 Standard error of θ̂ The nominal standard errors in θ̂

approximate those of the Poisson distribution (i.e. mean equals
variance) when θ̂ is not too large (less than θ̂=200). For large values,
however, the variation becomes quite a bit larger, and at θ̂≈104, the
variance is ≈106—two orders of magnitude larger.

3.2.3 Extra model variation According to the simulations carried
out as described earlier, the asymptotic standard errors are in
close agreement with the observed variation (Section 6.3 in
Supplementary Material). However, these standard errors assume
homogeneity of the fragment length distribution across all sites
in a replicate. Evidence that the data contain more variation than
predicted under this assumption was shown by fitting the three
replicates of each sample separately, and computing the standard
deviation for the values of ρ̂ for the insertion site that had the
largest value when the triplicates were combined. When these values
are compared with the value obtained from the likelihood (i.e.

√
3

times the asymptotic SD from the fit of the combined triplicates),
it was seen that there were 32 instances in which the observed SD
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Fig. 3. Relative abundance of integration sites. A boxplot for the relative
abundances of each sample is shown. The width of each box and its whiskers
is quite narrow compared with the range of the data, and every sample has
sites (seen as dots) that lie well beyond the box and whisker. The samples
are in chronological order in each panel—lower is earlier.

was greater, while 12.1 are expected assuming as usual that the
sample variance follows a scaled χ2

df distribution with df =2. The
conclusion to be drawn is that there is variation beyond that specified
by the model. The likelihood method and standard errors developed
here allowed explicit checking of the model; adjustment to account
for overdispersion such as that in Section 3.3.1 is needed.

3.3 Tests for change between samples
3.3.1 Change in relative abundance Tests for changes in relative
abundance, δid1d2

could be based on the asymptotic standard
errors. However, as noted earlier in Section 3.2.2 extra-model
variation was seen among the individual replicates—making the
theoretical standard errors too small. If it happens that most of the
relative abundances have only negligible change, then the large-scale
hypothesis testing framework (Efron, 2004) may be used for testing
and calculation of false discovery rates. To ascertain whether this
framework can be applied here, the z-statistics for change in relative
abundance between date d1 and date d2 were calculated:

zid1d2
= ρ̂id2

− ρ̂id1√
se2

ρ̂id2
+se2

ρ̂id1

(4)

Inspection of histograms and Normal probability plots of the
z-statistics for pairs of dates in individual patients (data not shown)
revealed that the central part of the distribution matched the Normal
probability law, but the tails were usually too long to match. This
is consistent with the majority of sites having negligible change in
relative abundance and a few having substantial changes. Figure 4
shows the results for all patients and pairs of times combined. The
qq-plot is nearly linear through its central region and has a slope of
about 1.5, which suggests variation beyond that in the model used to
develop the z-statistics. The variation in θ̂ was seen to grow rapidly
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Fig. 4. Change statistics distribution. The Normal density (A) and the
empirical distribution of change statistics (D) are used to form the Normal
probability qq–plot (C). Linearity of the qq-plot is used to visually assess
goodness-of-fit to the theoretical density. The plot would follow the line of
identity in (C), if the data were Normal with unit variance. The linearity of
the central portion is expected when there is a mixture of null and non-null
hypotheses, but an adjustment is needed to match the null variance. (B) The
cutoffs for a 20% FDR after accounting for the apparent null variance.

for values of θ>1000 and Figure 4B reflects this; there the cutoff in
δ̂ needed to declare a difference at FDR<0.20 is plotted against the
average relative abundance of two samples, (ρ̂id1

+ ρ̂id2
)/2, for 33

patient samples. For highly abundant sites that account for >10%
of insertion bearing fragments, the difference needed to declare
FDR<0.20 must be quite large. For example, when the average
ρ̂ of two dates is 30%, the difference must exceed 12%. See the
comment on this matter in Section 4.

Figure 5 shows the relative abundances for each pair of dates for
the samples of three patients (E, G and I). (Supplement Figs S17
and S18 show similar plots for all patients.) Those differences that
achieve FDR<0.20 are marked with heavy lines (solid for adjacent
pairs, dashed for first versus third). Two insertion sites of patient
E were undetectable in 2000, then increased to moderately high
levels in 2005 (although FDR >0.20), and then increased again by
2008 to high levels. The most abundant site of patient G showed
significant increases from 2001 to 2005 and again to 2008. Patient
I has two very abundant sites, but the fairly large differences fail to
attain FDR<0.20 even as more modest increases are discovered. In
part, this is due to the larger standard errors associated with highly
abundant sites as well as the rescaling needed to account for the
overdispersion evident in Figure 4. In a patient with such abundant
sites, increasing the number of replicates in the later samples would
reduce the standard errors—yielding more accurate monitoring.

In each panel, it is apparent that many sites are at undetectable
levels for at least one visit as expected with many low abundance
sites. Seventy percent are undetectable at some time for patient E,
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Fig. 5. Changes in abundance. The relative abundances are plotted against
sample date. The vertical axis uses a cube root scale for better visualization.
Gray lines join the values between first and second samples and between the
second and third samples.Black lines overlay adjacent pairs with abundances
different at FDR <0.20. Dashed lines overlie both pairs when first and third
samples differ at FDR<0.20.

77% for patient G and 82% for patient I. It is possible that some
new insertions are established and existing insertions vanish.

Here, the z-statistics for each patient are calibrated separately to
determine the scale factors and FDR cutoffs (which were used in
Fig. 4B). The scale factors for the patients range from 1.251 to
1.977 with a mean of 1.576.

4 DISCUSSION
We addressed the problem of estimating the abundance of insertion
sites from data on fragment lengths by a maximum likelihood
approach. Simulations showed that the method works well, when
the estimated probabilities of fragment lengths are not too variable.
When a glm is used to fit the fragment length distribution, the
abundance estimates have little bias and the asymptotic standard
errors accurately portray the variability in simulated data.

These standard errors are available for single replicates, and
provide a check on the model: empirical variations in triplicates from
patient data varied more than expected, showing overdispersion
of abundance estimates. Further, the z-statistics for the change
in relative abundance have a broader distribution than the theory
suggests. These observations emphasize the value of replication
and mandate the use of standard errors derived empirically from
replicates (as with a jackknife standard error) or by application of the
large-scale hypothesis testing approach (Efron, 2004). Inspection of
the data as histograms and as normal probability plots suggests that
the large-scale hypothesis testing framework is suitable for testing
changes in relative abundance.

The standard errors associated with relative abundances increase
dramatically as the relative abundances increase >10% using the

current setup. This makes it rather difficult to detect changes in the
relative abundance of insertion sites that are highly abundant. For
example, a change from 40% to 50% is below the limit of detection
in data like those shown here in which there are three replicates. The
standard errors of abundant sites would diminish if a sample were
divided into more replicates.

Jackknife corrections for bias in the total number of insertion sites,
the entropy of abundances and their Gini coefficient due to unseen
insertion sites were successful in simulations (Sections 4, 7 and 8
in Supplementary Material) in spite of a large fraction of unseen
sites. These corrections were enabled by the replicates, which also
allowed the computation of jackknife standard errors.

Some heterogeneity of fragment lengths across sites was
observed, the increase in power of added replicates to detect this
also emphasizes the importance of replication. Even more replicates
than the three used here may be needed for careful monitoring of
patient status; the power to detect change in the abundance of highly
abundant insertion sites is limited even with three replicates of each
sample. In clinical monitoring in which highly abundant sites play a
key role, an obvious way to increase power is to increase the number
of replicates beyond the three replicates used here.

Going forward, these methods allow much more detailed
assessment of clonal behavior during HTLV-1 infection. In the first
analysis of these data, abundances could only be estimated roughly
and standard errors had to be empirically determined. Using the
methods described here, combined with ongoing data acquisition,
it will be possible to relate much more fine grained information on
clonal abundance to clinically relevant parameters such as viral gene
expression and leukemogenesis.
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